Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Phys Med Biol ; 68(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37164020

RESUMO

Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Incerteza , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias de Cabeça e Pescoço/radioterapia , Probabilidade , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco
2.
Clin Transl Radiat Oncol ; 40: 100625, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090849

RESUMO

Purpose: This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes. Methods: IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT. Results: Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D98 degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands. Conclusion: Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.

3.
J Appl Clin Med Phys ; 24(1): e13806, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347055

RESUMO

PURPOSE: This manuscript describes the structure, management and outcomes of a multi-institutional clinical and research medical physics residency program (Harvard Medical Physics Residency Program, or HMPRP) to provide potentially useful information to the centers considering a multi-institutional approach for their training programs. METHODS: Data from the program documents and public records was used to describe HMPRP and obtain statistics about participating faculty, enrolled residents, and graduates. Challenges associated with forming and managing a multi-institutional program and developed solutions for effective coordination between several clinical centers are described. RESULTS: HMPRP was formed in 2009 and was accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) in 2011. It is a 3-year therapy program, with a dedicated year of research and the 2 years of clinical training at three academic hospitals. A CAMPEP-accredited Certificate Program is embedded in HMPRP to allow enrolled residents to complete a formal didactic training in medical physics if necessary. The clinical training covers the material required by CAMPEP. In addition, training in protons, CyberKnife, MR-linac, and at network locations is included. The clinical training and academic record of the residents is outstanding. All graduates have found employment within clinical medical physics, mostly at large academic centers and graduates had a 100% pass rate at the oral American Board of Radiology exams. On average, three manuscripts per resident are published during residency, and multiple abstracts are presented at conferences. CONCLUSIONS: A multi-institutional medical physics residency program can be successfully formed and managed. With a collaborative administrative structure, the program creates an environment for high-quality clinical training of the residents and high productivity in research. The main advantage of such program is access to a wide variety of resources. The main challenge is creating a structure for efficient management of multiple resources at different locations. This report may provide valuable information to centers considering starting a multi-institutional residency program.


Assuntos
Internato e Residência , Humanos , Estados Unidos , Educação de Pós-Graduação em Medicina , Acreditação , Física Médica/educação , Instalações de Saúde
4.
Front Oncol ; 13: 1333039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510267

RESUMO

Purpose: To demonstrate the suitability of optically stimulated luminescence detectors (OSLDs) for accurate simultaneous measurement of the absolute point dose and dose-weighted linear energy transfer (LETD) in an anthropomorphic phantom for experimental validation of daily adaptive proton therapy. Methods: A clinically realistic intensity-modulated proton therapy (IMPT) treatment plan was created based on a CT of an anthropomorphic head-and-neck phantom made of tissue-equivalent material. The IMPT plan was optimized with three fields to deliver a uniform dose to the target volume covering the OSLDs. Different scenarios representing inter-fractional anatomical changes were created by modifying the phantom. An online adaptive proton therapy workflow was used to recover the daily dose distribution and account for the applied geometry changes. To validate the adaptive workflow, measurements were performed by irradiating Al2O3:C OSLDs inside the phantom. In addition to the measurements, retrospective Monte Carlo simulations were performed to compare the absolute dose and dose-averaged LET (LETD) delivered to the OSLDs. Results: The online adaptive proton therapy workflow was shown to recover significant degradation in dose conformity resulting from large anatomical and positioning deviations from the reference plan. The Monte Carlo simulations were in close agreement with the OSLD measurements, with an average relative error of 1.4% for doses and 3.2% for LETD. The use of OSLDs for LET determination allowed for a correction for the ionization quenched response. Conclusion: The OSLDs appear to be an excellent detector for simultaneously assessing dose and LET distributions in proton irradiation of an anthropomorphic phantom. The OSLDs can be cut to almost any size and shape, making them ideal for in-phantom measurements to probe the radiation quality and dose in a predefined region of interest. Although we have presented the results obtained in the experimental validation of an adaptive proton therapy workflow, the same approach can be generalized and used for a variety of clinical innovations and workflow developments that require accurate assessment of point dose and/or average LET.

5.
Cancers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291939

RESUMO

PURPOSE: To evaluate the suitability of low-dose CT protocols for online plan adaptation of head-and-neck patients. METHODS: We acquired CT scans of a head phantom with protocols corresponding to CT dose index volume CTDIvol in the range of 4.2-165.9 mGy. The highest value corresponds to the standard protocol used for CT simulations of 10 head-and-neck patients included in the study. The minimum value corresponds to the lowest achievable tube current of the GE Discovery RT scanner used for the study. For each patient and each low-dose protocol, the noise relative to the standard protocol, derived from phantom images, was applied to a virtual CT (vCT). The vCT was obtained from a daily CBCT scan corresponding to the fraction with the largest anatomical changes. We ran an established adaptive workflow twice for each low-dose protocol using a high-quality daily vCT and the corresponding low-dose synthetic vCT. For a relative comparison of the adaptation efficacy, two adapted plans were recalculated in the high-quality vCT and evaluated with the contours obtained through deformable registration of the planning CT. We also evaluated the accuracy of dose calculation in low-dose CT volumes using the standard CT protocol as reference. RESULTS: The maximum differences in D98 between low-dose protocols and the standard protocol for the high-risk and low-risk CTV were found to be 0.6% and 0.3%, respectively. The difference in OAR sparing was up to 3%. The Dice similarity coefficient between propagated contours obtained with low-dose and standard protocols was above 0.982. The mean 2%/2 mm gamma pass rate for the lowest-dose image, using the standard protocol as reference, was found to be 99.99%. CONCLUSION: The differences between low-dose protocols and the standard scanning protocol were marginal. Thus, low-dose CT protocols are suitable for online adaptive proton therapy of head-and-neck cancers. As such, considering scanning protocols used in our clinic, the imaging dose associated with online adaption of head-and-neck cancers treated with protons can be reduced by a factor of 40.

6.
Cancers (Basel) ; 14(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36010919

RESUMO

Currently, adaptive strategies require time- and resource-intensive manual structure corrections. This study compares different strategies: optimization without manual structure correction, adaptation with physician-drawn structures, and no adaptation. Strategies were compared for 16 patients with pancreas, liver, and head and neck (HN) cancer with 1-5 repeated images during treatment: 'reference adaptation', with structures drawn by a physician; 'single-DIR adaptation', using a single set of deformably propagated structures; 'multi-DIR adaptation', using robust planning with multiple deformed structure sets; 'conservative adaptation', using the intersection and union of all deformed structures; 'probabilistic adaptation', using the probability of a voxel belonging to the structure in the optimization weight; and 'no adaptation'. Plans were evaluated using reference structures and compared using a scoring system. The reference adaptation with physician-drawn structures performed best, and no adaptation performed the worst. For pancreas and liver patients, adaptation with a single DIR improved the plan quality over no adaptation. For HN patients, integrating structure uncertainties brought an additional benefit. If resources for manual structure corrections would prevent online adaptation, manual correction could be replaced by a fast 'plausibility check', and plans could be adapted with correction-free adaptation strategies. Including structure uncertainties in the optimization has the potential to make online adaptation more automatable.

7.
Phys Med Biol ; 67(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35926482

RESUMO

Objective.Monte Carlo (MC) codes are increasingly used for accurate radiotherapy dose calculation. In proton therapy, the accuracy of the dose calculation algorithm is expected to have a more significant impact than in photon therapy due to the depth-dose characteristics of proton beams. However, MC simulations come at a considerable computational cost to achieve statistically sufficient accuracy. There have been efforts to improve computational efficiency while maintaining sufficient accuracy. Among those, parallelizing particle transportation using graphic processing units (GPU) achieved significant improvements. Contrary to the central processing unit, a GPU has limited memory capacity and is not expandable. It is therefore challenging to score quantities with large dimensions requiring extensive memory. The objective of this study is to develop an open-source GPU-based MC package capable of scoring those quantities.Approach.We employed a hash-table, one of the key-value pair data structures, to efficiently utilize the limited memory of the GPU and score the quantities requiring a large amount of memory. With the hash table, only voxels interacting with particles will occupy memory, and we can search the data efficiently to determine their address. The hash-table was integrated with a novel GPU-based MC code, moqui.Main results.The developed code was validated against an MC code widely used in proton therapy, TOPAS, with homogeneous and heterogeneous phantoms. We also compared the dose calculation results of clinical treatment plans. The developed code agreed with TOPAS within 2%, except for the fall-off and regions, and the gamma pass rates of the results were >99% for all cases with a 2 mm/2% criteria.Significance.We can score dose-influence matrix and dose-rate on a GPU for a 3-field H&N case with 10 GB of memory using moqui, which would require more than 100 GB of memory with the conventionally used array data structure.


Assuntos
Terapia com Prótons , Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
8.
Med Phys ; 49(8): 5476-5482, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35526213

RESUMO

BACKGROUND: Pencil beam scanning (PBS) monitoring chambers use an ionization control signal, monitor units (MUs), or gigaprotons (Gp) to irradiate a pencil beam and normalize dose calculations. The nozzle deflects the beam from the nozzle axis by an angle subtended at the source-to-axis distance (τ) from the isocenter. If the angle is not correctly considered in calibrations or calculations, it can lead to systematic errors. PURPOSE: Aspects to consider for machines of various τs are fourfold. First, for the machine, there is a pathlength change of proton tracks in the monitor chamber. Second, for measurements, a uniform-square irradiation over a plane, with constant Gp per spot, does not deliver uniform dose in a measurement plane. Third, for Monte Carlo (MC) simulations, Gp (and not MU) is proportional to simulating a number of protons. Fourth, for pencil beam algorithms (PBA), MU or Gp may be used for pencil beam weight, but usage needs to be consistent. Another consideration is the beam shape change from circular to oval in the projection onto voxels. METHODS: Coordinate systems for PBS delivery are described. RESULTS: Users of intermediate-τ machines, corresponding to the onset of 1% pathlength corrections within the scanned field size, must not assume that MUs are proportional to the number of particles in MC simulations, and the PBA may need pathlength corrections. For a field size of 24 × 24 cm2 , intermediate-τ machines correspond to 59 cm ≤ τ < 120 cm. For a field size of 40 × 40 cm2 , intermediate-τ machines correspond to 98 cm ≤ τ < 200 cm. Small-τ machines correspond to τ < 59 and 98 cm at these field sizes, respectively, which require corrections in projecting the beam shape onto voxels. CONCLUSIONS: Identifying corrections due to the pencil beam angle and their onset are important for reducing the outer diameter of proton therapy gantries. The use of Gp (or the number of protons) meterset standardizes data interchange and helps to reduce systematic errors due to the angle of the beam.


Assuntos
Terapia com Prótons , Calibragem , Método de Monte Carlo , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Cancers (Basel) ; 13(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885100

RESUMO

PURPOSE: To compare the efficacy of CT-on-rails versus in-room CBCT for daily adaptive proton therapy. METHODS: We analyzed a cohort of ten head-and-neck patients with daily CBCT and corresponding virtual CT images. The necessity of moving the patient after a CT scan is the most significant difference in the adaptation workflow, leading to an increased treatment execution uncertainty σ. It is a combination of the isocenter-matching σi and random patient movements induced by the couch motion σm. The former is assumed to never exceed 1 mm. For the latter, we studied three different scenarios with σm = 1, 2, and 3 mm. Accordingly, to mimic the adaptation workflow with CT-on-rails, we introduced random offsets after Monte-Carlo-based adaptation but before delivery of the adapted plan. RESULTS: There were no significant differences in accumulated dose-volume histograms and dose distributions for σm = 1 and 2 mm. Offsets with σm = 3 mm resulted in underdosage to CTV and hot spots of considerable volume. CONCLUSION: Since σm typically does not exceed 2 mm for in-room CT, there is no clinically significant dosimetric difference between the two modalities for online adaptive therapy of head-and-neck patients. Therefore, in-room CT-on-rails can be considered a good alternative to CBCT for adaptive proton therapy.

10.
Phys Med Biol ; 66(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710858

RESUMO

Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.


Assuntos
Terapia com Prótons , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
12.
Radiother Oncol ; 159: 39-47, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741469

RESUMO

BACKGROUND/PURPOSE: Setup variations and anatomical changes can severely affect the quality of head and neck intensity-modulated proton therapy (IMPT) treatments. The impact of these changes can be alleviated by increasing the plan's robustness a priori, or by adapting the plan online. This work compares these approaches in the context of head and neck IMPT. MATERIALS/METHODS: A representative cohort of 10 head and neck squamous cell carcinoma (HNSCC) patients with daily cone-beam computed tomography (CBCT) was evaluated. For each patient, three IMPT plans were created: 1- a classical robust optimization (cRO) plan optimized on the planning CT, 2- an anatomical robust optimization (aRO) plan additionally including the two first daily CBCTs and 3- a plan optimized without robustness constraints, but online-adapted (OA) daily, using a constrained spot intensity re-optimization technique only. RESULTS: The cumulative dose following OA fulfilled the clinical objective of both the high-risk and low-risk clinical target volumes (CTV) coverage in all 10 patients, compared to 8 for aRO and 4 for cRO. aRO did not significantly increase the dose to most organs at risk compared to cRO, although the integral dose was higher. OA significantly reduced the integral dose to healthy tissues compared to both robust methods, while providing equivalent or superior target coverage. CONCLUSION: Using a simple spot intensity re-optimization, daily OA can achieve superior target coverage and lower dose to organs at risk than robust optimization methods.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Phys Med Biol ; 66(5)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503592

RESUMO

The high conformality of intensity-modulated proton therapy (IMPT) dose distributions causes treatment plans to be sensitive to geometrical changes during the course of a fractionated treatment. This can be addressed using adaptive proton therapy (APT). One important question in APT is the frequency of adaptations performed during a fractionated treatment, which is related to the question whether plan adaptation has to be done online or offline. The purpose of this work is to investigate the impact of weekly and daily online IMPT plan adaptation on the treatment quality for head and neck patients. A cohort of ten head and neck patients with daily acquired cone-beam CT (CBCT) images was evaluated retrospectively. Dose tracking of the IMPT treatment was performed for three scenarios: base plan with no adaptation (BP), weekly online adaptation (OAW), and daily online adaptation (OAD). Both adaptation schemes used an in-house developed online APT workflow, performing Monte Carlo dose calculations on scatter-corrected CBCTs. IMPT plan adaptation was achieved by only tuning the weights of a subset of beamlets, based on deformable image registration from the planning CT to each CBCT. Although OADmitigated random delivery errors more effectively than OAWon a fraction per fraction basis, both OAWand OADachieved the clinical goals for all ten patients, while BP failed for six cases. In the high-risk CTV, accumulated values ofD98%ranged between 97.15% and 99.73% of the prescription dose for OAD, with a median of 98.07%. For OAW, values between 95.02% and 99.26% were obtained, with a median of 97.61% of the prescription dose. Otherwise, the dose to most organs at risk was similar for all three scenarios. Globally, our results suggest that OAWcould be used as an alternative approach to OADfor most patients in order to reduce the clinical workload.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
14.
Phys Med Biol ; 65(24)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32580174

RESUMO

Adaptive proton therapy (APT) is a promising approach for the treatment of head and neck cancers. One crucial element of APT is daily volumetric imaging of the patient in the treatment position. Such data can be acquired with cone-beam computed tomography (CBCT), although scatter artifacts make uncorrected CBCT images unsuitable for proton therapy dose calculation. The purpose of this work is to evaluate the performance of a U-shape deep convolutive neural network (U-Net) to perform projection-based scatter correction and enable fast and accurate dose calculation on CBCT images in the context of head and neck APT. CBCT projections are simulated for a cohort of 48 head and neck patients using a GPU accelerated Monte Carlo (MC) code . A U-Net is trained to reproduce MC projection-based scatter correction from raw projections. The accuracy of the scatter correction is experimentally evaluated using CT and CBCT images of an anthropomorphic head phantom. The potential of the method for head and neck APT is assessed by comparing proton therapy dose distributions calculated on scatter-free, uncorrected and scatter-corrected CBCT images. Finally, dose calculation accuracy is estimated in experimental patient images using a previously validated empirical scatter correction as reference. The mean and mean absolute HU differences between scatter-free and scatter-corrected images are -0.8 and 13.4 HU, compared to -28.6 and 69.6 HU for the uncorrected images. In the head phantom, the root-mean square difference of proton ranges calculated in the reference CT and corrected CBCT is 0.73 mm. The average 2%/2 mm gamma pass rate for proton therapy plans optimized in the scatter free images and re-calculated in the scatter-corrected ones is 98.89%. In experimental CBCT patient images, a 3%/3 mm passing rate of 98.72% is achieved between the proposed method and the reference one. All CBCT projection volume could be corrected in less than 5 seconds.


Assuntos
Terapia com Prótons , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imagens de Fantasmas , Espalhamento de Radiação
15.
Technol Cancer Res Treat ; 19: 1533033820920650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329413

RESUMO

BACKGROUND: Lower-dose cone-beam computed tomography protocols for image-guided radiotherapy may permit target localization while minimizing radiation exposure. We prospectively evaluated a lower-dose cone-beam protocol for central nervous system image-guided radiotherapy across a multinational pediatrics consortium. METHODS: Seven institutions prospectively employed a lower-dose cone-beam computed tomography central nervous system protocol (weighted average dose 0.7 mGy) for patients ≤21 years. Treatment table shifts between setup with surface lasers versus cone-beam computed tomography were used to approximate setup accuracy, and vector magnitudes for these shifts were calculated. Setup group mean, interpatient, interinstitution, and random error were estimated, and clinical factors were compared by mixed linear modeling. RESULTS: Among 96 patients, with 2179 pretreatment cone-beam computed tomography acquisitions, median age was 9 years (1-20). Setup parameters were 3.13, 3.02, 1.64, and 1.48 mm for vector magnitude group mean, interpatient, interinstitution, and random error, respectively. On multivariable analysis, there were no significant differences in mean vector magnitude by age, gender, performance status, target location, extent of resection, chemotherapy, or steroid or anesthesia use. Providers rated >99% of images as adequate or better for target localization. CONCLUSIONS: A lower-dose cone-beam computed tomography protocol demonstrated table shift vector magnitude that approximate clinical target volume/planning target volume expansions used in central nervous system radiotherapy. There were no significant clinical predictors of setup accuracy identified, supporting use of this lower-dose cone-beam computed tomography protocol across a diverse pediatric population with brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Lactente , Cooperação Internacional , Masculino , Pediatria/métodos , Estudos Prospectivos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Adulto Jovem
16.
Phys Imaging Radiat Oncol ; 16: 89-94, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33458349

RESUMO

BACKGROUND AND PURPOSE: Scatter correction of cone-beam computed tomography (CBCT) projections may enable accurate online dose-delivery estimations in photon and proton-based radiotherapy. This study aimed to evaluate the impact of scatter correction in CBCT-based proton range/dose calculations, in scans acquired in both proton and photon gantries. MATERIAL AND METHODS: CBCT projections of a Catphan and an Alderson phantom were acquired on both a proton and a photon gantry. The scatter corrected CBCTs (corrCBCTs) and the clinical reconstructions (stdCBCTs) were compared against CTs rigidly registered to the CBCTs (rigidCTs). The CBCTs of the Catphan phantom were segmented by materials for CT number analysis. Water equivalent path length (WEPL) maps were calculated through the Alderson phantom while proton plans optimized on the rigidCT and recalculated on all CBCTs were compared in a gamma analysis. RESULTS: In medium and high-density materials, the corrCBCT CT numbers were much closer to those of the rigidCT than the stdCBCTs. E.g. in the 50% bone segmentations the differences were reduced from above 300 HU (with stdCBCT) to around 60-70 HU (with corrCBCT). Differences in WEPL from the rigidCT were typically well below 5 mm for the corrCBCTs, compared to well above 10 mm for the stdCBCTs with the largest deviations in the head and thorax regions. Gamma pass rates (2%/2mm) when comparing CBCT-based dose re-calculations to rigidCT calculations were improved from around 80% (with stdCBCT) to mostly above 90% (with corrCBCT). CONCLUSION: Scatter correction leads to substantial artefact reductions, improving accuracy of CBCT-based proton range/dose calculations.

17.
Phys Med ; 69: 19-27, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812726

RESUMO

PURPOSE: To investigate angular sensitivity of proton range variation due to anatomic change in patients and patient setup error via water equivalent path length (WEPL) calculations. METHODS: Proton range was estimated by calculating WEPL to the distal edge of target volume using planning CT (pCT) and weekly scatter-corrected cone-beam CT (CBCT) images of 11 head and neck patients. Range variation was estimated as the difference between the distal WEPLs calculated on pCT and scatter-corrected CBCT (cCBCT). This WEPL analysis was performed every five degrees ipsilaterally to the target. Statistics of the distal WEPL difference were calculated over the distal area to compare between different beam angles. Physician-defined contours were used for the WEPL calculation on both pCT and cCBCT, not considering local deformation of target volume. It was also tested if a couch kick (10°) can mitigate the range variation due to anatomic change and patient setup error. RESULTS: For most of the patients considered, median, 75% quantile, and 95% quantile of the distal WEPL difference were largest for posterior oblique angles, indicating a higher chance of overdosing normal tissues at distal edge with these angles. Using a couch kick resulted in decrease in the WEPL difference for some posterior oblique angles. CONCLUSIONS: It was demonstrated that the WEPL change has angular dependency for the cohort of head and neck cancer patients. Selecting beam configuration robust to anatomic change in patient and patient setup error may improve the treatment outcome of head and neck proton therapy.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons , Tomografia Computadorizada por Raios X , Água/química , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Humanos , Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
18.
Phys Med Biol ; 64(8): 085004, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30736026

RESUMO

To promote accurate image-guided radiotherapy (IGRT) for a proton pencil beam scanning (PBS) system, a new quality assurance (QA) procedure employing a cone-shaped scintillator detector has been developed for multiple QA tasks in a semi-automatic manner. The cone-shaped scintillator detector (XRV-124, Logos Systems, CA) is sensitive to both x-ray and proton beams. It records scintillation on the cone surface as a 2D image, from which the geometry of the radiation field that enters and exits the cone can be extracted. Utilizing this feature, QA parameters that are essential to PBS IGRT treatment were measured and analyzed. The first applications provided coincidence checks of laser, imaging and radiation isocenters, and dependencies on gantry angle and beam energies. The analysis of the Winston-Lutz test was made available by combining the centricity measurements of the x-ray beam and the pencil beam. The accuracy of the gantry angle was validated against console readings provided by the digital encoder and an agreement of less than 0.2° was found. The accuracy of the position measurement was assessed with a robotic patient positioning system (PPS) and an agreement of less than 0.5 mm was obtained. The centricity of the two onboard x-ray imaging systems agreed well with that from the routinely used Digital Imaging Positioning System (DIPS), up to a consistent small shift of (-0.5 mm, 0.0 mm, -0.3 mm). The pencil beam spot size, in terms of σ of Gaussian fitting, agreed within 0.2 mm for most energies when compared to the conventional measurements by a 2D ion-chamber array (MatriXX-PT, IBA Dosimetry, Belgium). The cone-shaped scintillator system showed advantages in making multi-purpose measurements with a single setup. The in-house algorithms were successfully implemented to measure and analyze key QA parameters in a semi-automatic manner. This study presents an alternative and more efficient approach for IGRT QA for PBS and potentially for linear accelerators.


Assuntos
Radioterapia Guiada por Imagem/métodos , Algoritmos , Humanos , Terapia com Prótons/métodos , Radioterapia Guiada por Imagem/instrumentação , Contagem de Cintilação/instrumentação , Contagem de Cintilação/métodos
19.
Neurosurgery ; 84(2): 435-441, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547929

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) of the spine provides superior tumor control, but vertebral compression fractures are increased and the pathophysiological process underneath is not well understood. Data on histopathological changes, particularly after salvage SBRT (sSBRT) following conventional irradiation, are scarce. OBJECTIVE: To investigate surgical specimens after sSBRT and primary SBRT (pSBRT) regarding histopathological changes. METHODS: We assessed 704 patients treated with spine SBRT 2006 to 2012. Thirty patients underwent salvage surgery; 23 histopathological reports were available. Clinical and histopathological findings were analyzed for sSBRT (69.6%) and pSBRT (30.4%). RESULTS: Mean time to surgery after sSBRT/pSBRT was 8.3/10.3 mo (P = .64). Reason for surgery included pain (sSBRT/pSBRT: 12.5%/71.4%, P = .25), fractures (sSBRT/pSBRT: 37.5%/28.6%, P = .68), and neurological symptoms (sSBRT/pSBRT: 68.8%/42.9%, P = .24). Radiological tumor progression after sSBRT/pSBRT was seen in 71.4%/42.9% (P = .2). Most specimens displayed viable/proliferative tumor (sSBRT/pSBRT: 62.5%/71.4%, P = .68 and 56.3%/57.1%, P = .97). Few specimens showed soft tissue necrosis (sSBRT/pSBRT: 20%/28.6%, P = .66), osteonecrosis (sSBRT/pSBRT: 14.3%/16.7%, P = .89), or bone marrow fibrosis (sSBRT/pSBRT: 42.9%/33.3%, P = .69). Tumor bed necrosis was more common after sSBRT (81.3%/42.9%, P = .066). Radiological tumor progression correlated with viable/proliferative tumor (P = .03/P = .006) and tumor bed necrosis (P = .03). Fractures were increased with bone marrow fibrosis (P = .07), but not with osteonecrosis (P = .53) or soft tissue necrosis (P = .19). Neurological symptoms were common with radiological tumor progression (P = .07), but not with fractures (P = .18). CONCLUSION: For both, sSBRT and pSBRT, histopathological changes were similar. Neurological symptoms were attributable to tumor progression and pathological fractures were not associated with osteonecrosis or tumor progression.


Assuntos
Radiocirurgia/efeitos adversos , Reirradiação/efeitos adversos , Terapia de Salvação/efeitos adversos , Neoplasias da Coluna Vertebral/radioterapia , Adulto , Idoso , Estudos de Coortes , Feminino , Fraturas por Compressão/epidemiologia , Fraturas por Compressão/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Necrose/epidemiologia , Necrose/etiologia , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radiocirurgia/métodos , Reirradiação/métodos , Terapia de Salvação/métodos , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/secundário
20.
Artigo em Inglês | MEDLINE | ID: mdl-34234960

RESUMO

PURPOSE: To automatically segment the diaphragm on individual lung cone-beam CT projection images, to enable real-time tracking of lung tumors using kilovoltage imaging. METHODS: The deep neural network Mask R-CNN was trained on 3500 raw cone-beam CT projection images from 10 lung cancer patients, with the diaphragm manually segmented on each image used as a ground truth label. Ground-truth breathing traces were extracted from each patient for both diaphragm hemispheres, and apex positions were compared against the predicted output of the neural network. Ten-fold cross-validation was used to evaluate the segmentation accuracy. RESULTS: The mean diaphragm apex prediction error was 4.4 mm. The mean percentage of projection images for which a successful prediction could me made was 87.3%. Prediction accuracy at some lateral gantry angles was worse due to overlap between diaphragm hemispheres, and the increased amount of fatty tissue. CONCLUSIONS: The neural network was able to track the diaphragm apex position successfully. This allows accurate assessment of the breathing phase, which can be used to estimate the position of the lung tumor in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...